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ABSTRACT

This paper gives an overview of those aspects of simulation methodology that are
(to some extent) peculiar to the simulation of queueing systems. A generalized semi-
Markov process framework for describing queueing systems is used through much of the
paper. The main topics covered are: output analysis for simulation of transient and steady-
state quantities, variance reduction methods that exploit queueing structure, and gradient

estimation methods for performance parameters associated with queueing networks.

KEYWORDS: Simulation, queueing theory, output analysis, variance reduction, general-

ized semi-Markov processes, gradient estimation.
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1. INTRODUCTION

This paper is intended to give the reader an overview of those aspects of simulation
methodology that exploit (to some degree) the stochastic structure of queueing systems.
As a consequence, certain more broadly based methodologies are not discussed here; see
Chapters 2, 3, and 8 of BRATLEY, FOX, and SCHRAGE (1987) for a more complete

picture of the current state of simulation methodology.

In Section 2, we argue that simulation is an important numerical tool for the study of
complex queueing systems. Section 3 develops the generalized semi-Markov process view of
queueing systems, which runs as a unifying thread through much of this paper. In Section
4, we describe the basic methodology for the analysis of simulation output associated with
estimation of transient quantities. Section 5 describes the analogues of these methods for
the steady-state estimation problem. The key role of general state space Markov chain

theory in the analysis of steady-state output is also described there.

Section 6 describes some recent work on exploiting diffusion approximations for queues
in heavy traffic to develop insight into the question of how the simulation run-length re-
quired to estimate steady-state quantities increases as the traffic intensity converges to
unity. In Section 7, the ideas of variance reduction and efficiency improvement are in-
troduced. These methods permit the simulator to improve upon conventional estimation
methods by incorporating knowledge of the stochastic system under consideration into the
estimator. Sections 8 through 14 describe seven such techniques that exploit queueing-
related stochastic structure. Finally, in Section 15 two powerful new methods (based on
perturbation analysis and likelihood ratios) for estimating gradients of queueing perfor-

mance parameters are discussed.

2. SIMULATION AS A NUMERICAL TOOL
Simulation is a powerful tool for studying complex queueing systems. Its popularity
derives from the following factors:

1) The basic idea underlying simulation is conceptually simple to understand. As a result,
it is a tool that is accessible to a wide range of users, including those without a strong
background in the theory of stochastic processes.

2) By using simulation in conjunction with sophisticated graphics, one can observe the

evolution of sample trajectories of the system. This can provide an insight into the
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system that is unavailable from a purely numerical study, in which the focus would be

on computation of expectations of various performance measures.

3) Conventional numerical approaches often rely on solving specifically structured systems
of equations. The appropriate system of equations differs from one type of expectation
to another. For example, the method used to solve for the steady-state of a Markov
chain is quite different from that used to calculate the transient probabilities. On
the other hand, simulation offers a methodology which can calculate expectations of
arbitrary functionals of the system, without any major change in the basic approach.

4) Conventional numerical techniques are generally oriented to the solution of stochastic
systems having rather special probabilistic structure {e.g. discrete-time and continuous-
time Markov chains). By contrast, simulation is a general-purpose tool for which the
study of a general discrete-event system requires a programming effort comparable to
its Markovian counterpart (in which, for example, all inter-arrival and service time
distributions are assumed exponential).

As the above points indicate, a principal advantage of Monte Carlo simulation is that
implementation of such algorithms by practitioners is relatively straightforward, thereby
saving time and (possibly) money. In addition, there are often sound computational rea-
sons for choosing a simulation algorithm over competing numerical approaches. We will
illustrate this point with an example.

Suppose that one is interested in the transient behavior of an irreducible closed Jackson
network, containing n customers, with s; servers at the s'th station, 1 <+ < d. The state
space S of the corresponding continuous-time Markov chain X = (X(t) : t > 0) is the set of

d-tuples {(ky,..., kq) : kieZ* ks + ...+ kg = n}, where Z+* is the set of non-negative integers.

Note that
n+d-1
ISI=( d )

so that the size of the state space S grows rapidly with n.

If one is interested in calculating a = E,f(X(t)) for f : R — R. (E,() denotes the
expectation operator conditional on X(0) having distribution n), a conventional numerical
approach would typically rely on the fact that
{2.1) a = n‘ exp(At)f
where A s the generator of X. (We assume throughout this paper that all vectors are

encoded as column vectors.) It is clear that the complexity of a conventional numerical
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algorithm for calculating (2.1) will increase (rapidly) with n, since such algorithms are

highly sensitive to |S].
For example, it is well known that the right-hand side of (2.1) can be expressed as

oo Am ™
n'exp(At)f =n* 3 —t™f.

m=0

One can recursively compute the products g, = A™¢™ f/ml! via gm = Agm-1 -t/m; each of these
matrix-vector multiplications takes on the order of |S|? operations. This analysis suggests
that the complexity of this matrix-vector multiplication algorithm increases rapidly with
n.

To be more precise, assume || f]| < 1 where ||f|| = max{|f(z)] : zeS}. If u,,...,uq are the
service rates at the d stations, note that

4]l = max{) _ |4y ] : zeS)
yeS

d
<2 s

=1

is independent of n. Thus, for a given error tolerance ¢, one can select M(¢) (independently
of n) such that

| Z " A™™ f/ml| < ¢.

m>AM(e)
Hence, the complexity to calculate E,f(X(t)) to precision ¢, via the above algorithm, for
f’s satisfying ||f|| <1, is the number of operations required to calculate

"t D A™™f/ml,

m<M(s)

which is, of course, of order n24-3, (Recall that |§| is of order n¢-t). Thus, for a system
having a large number of customers n (or stations d), this approach becomes infeasible.
On the other hand, Monte Carlo simulation is relatively insensitive to the size of the

state space. Let X;, X3,... be i.i.d. copies of the process X and consider the estimator

am = L 3" 10%,(0).

=1

If |71 < 1, Chebyshev’s inequality implies that
P —-a|>e€} < 2
{lam al €} > czm'

4

.
00, ' i A A A LA T s, T A g ™ A Sy A Ko AR
!h"hlh LU N .’t‘v" A S W N“ .‘ " "i" .&' > iﬂl.' " .O > ."\.‘. N -\' 5 T BN -

D R O X0 20




Thus, the sample size m required to obtain ¢-precision with probability 16 is independent
of |S|. Furthermore, we claim that the number of observations needed to generate a,
is insensitive to |S|. To see this, note that X can be uniformized via a Poisson process
N(-) having rate Tu;s; (| Asa| < Tuys; for all zeS). Since the transition epochs of X form a
subsequence of the jump times of N, it follows that the iiumber of jumps of X up to ¢ is
dominated by N(t). But EN(t) = 7., u;4; - t, which is independent of n. We conclude that
Monte Carlo simulation’s efficiency is relatively insensitive to the magnitude of n.

The above analysis suggests the following rule of thumb. As the state space of a
queueing system gets larger and larger, simulation becomes increasingly more competitive
as a computational tool.

An additional attractive feature of Monte Carlo simulation, which is important compu-
tationally, is that the error analysis for Monte Carlo algorithms is generally straightforward.
For example, the typical Monte Carlo approach to calculating a parameter a which can be
expressed as the mean of a r.v. X (i.e., a = EX) is to generate i.i.d. replicates X,,X,... of
the r.v. X and to use X(n) = n~! 37, X; as an estimator of a. The error in X(n) is usually
assessed via a confidence interval. In this setting, if EX? < oo, a simulator can simply use

the interval

(2.2) [X(n) -~ z(&)fk'-)- X(n) + 3(6)-‘-12)-

vn' vn
as a 100(1-6)% confidence interval for a. (In (2.2), z(6) is the root of the equation P{N(0,1) <
2(6)} = 1-6/2 and «(n) is the sample standard deviation.) Since the central limit theorem
justifies the asymptotic validity of (2.2) as a 100(1 - §)% confidence interval for a, we see
that (2.2) provides an easily calculated and asymptotically precise error assessment for the
estimator X(n). Error assessments (even in the form of upper bounds on the error) are

typically quite hard to calculate for conventional numerical schemes.

3. THE ROLE OF GSMP’S IN QUEUEING SIMULATIONS
In order to describe the simulation of queueing systems, we shall find it convenient
to use the formalism of generalized semi-Markov processes (GSMP’s). GSMP’s form a
class of stochastic processes that succinctly describe the essential probabilistic features of
queueing systems. A GSMP is characterized by:
(3.1) s: a “physical” state space which is finite or countable (typically,
S will be the set of all possible queue-length vectors)

5
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E(s): the set of events which can occur in seS (E(s) will usually corres-
pond to the different arrival and departure events possible when
the system is in state s)
p(s';8,¢): the probability of jumping from s to o', given that event e triggers
the transition from s (e.g. ¢ might correspond to station i com-
pleting service, in which case p(s’; s,¢) might represent the proba-
bility of sending a customer from station s to station j; here o' =
w — ¢; + ¢; Where ¢; is the i’th unit vector
Toel the rate at which the clock corresponding to event ¢ runs down to
zero in state s (e.g. in a queueing network, r,. might be unity ex-
cept for events ¢ which are “interrupted” in state s, in which case
r.e = 0; such “interrupted” events occur in the modeling of pre-
emptive resume queueing priorities)
F(;s',¢',s,¢): the probability distribution which schedules a new event ¢’ in
state o', given that the previous state was s and the transition
was triggered by ¢ (e.g. these would typically be service and inter-

arrival time distributions in a queueing network).

We will now illustrate the GSMP modeling formalism by describing a general service
time/inter-arrival time version of an open Jackson network. We assume that the net-
work has d stations, each station containing one server. Specifically, each server uses a first
come/first serve queueing discipline; the service times for the consecutive customers served
at the i’th station are i.i.d. with common continuous distribution G;. The external arrival
stream to the i’th station is assumed to be a renewal process with continuous inter-arrival
distribution F;. Furthermore, customers are routed between stations according to a Marko-
vian routing scheme with associated substochastic routing matrix P = (P, : 1 < 4,5 < d).
Finally, the routing, inter-arrival, and service time sequences described above are all as-
sumed independent of one another.

Given such a network, we obtain a GSMP by letting § = Z* x... x Z+ (d times); the
vector s = (s,...,34)eS will then represent the queue-lengths (including the customer at
the server) at each of the d stations. A state transition occurs via either of the following
possibilities: an external arrival event or a departure event. Thus, E(s) = {(s,1):1 <

1 <d}u{(s,2): 1 <s <d, s > 1}, where (,1) corresponds to an external arrival to station +
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and (5,2) denotes a departure from station j. Note that the continuity of the F;’s and G,’s

implies that simultaneous events can not occur, in the sense that simultaneous external
arrivals and departures are impossible. As for the routing probabilities p(s’; s, ¢), observe
that:

P(";‘u(‘)l))= {3 g:::::::

P lf8_8+¢ —¢, 85 21
P(‘ ‘s(‘z))"{l 2,=1P., 1fa—a—¢:,8|>1

All “speeds” r,, =1 and F(;4', (s, 1),s,¢) = F;(-), whereas F(;#,(4,2),s,¢) = Gi(").

To precisely define the dynamics of a GSMP, we use an associated GSSMC (general
state space Markov chain). To simplify the remainder of our discussion of GSMP’s, we
henceforth assume that the distributions F(; ', ¢, s, ¢) are continuous with F(0;s,¢',s,¢) = 0;
this permits us to ignore the possibility of simultaneous arrivals and departures. We also
require that r,, > 0 for some eeE(s); otherwise, the system gets “stuck” in state s. The key
to the dynamics of a GSMP is to identify a clock with each of the events ecE(s) that are
“active” in state s¢S. In a queueing context, the clock readings will typically correspond to
the amounts of time remaining until the next arrival and departure events occur, for each
of the arrival and service time processes active in . A GSSMC is obtained by applying the
method of supplementary variables to the GSMP; the idea is that the GSSMC describes
not only the physical state of the system, but also the states of the clocks for each of the
currently active events. Thus, the GSSMC X = (X, : n > 0) will take the form X, = (S.,Ca),
where S, is the physical state at the n’th transition of the GSMP, and C, is the associated
vector of clock readings.

To describe the state space of X, let R, =[0,00), E =UJ,,s E(s), and set
C, ={ceRE : ¢, > 0 iff ecE(s),
CeToe # CerTeer fOT e % ¢/ Whenever
CeTeeCerToet > 0},
Then, £ =,,s({s} x C,) is the state space for the chain X. For (s, c)cZ, let
€ = (s,¢) = min{ee/re : ecE(s)),
63 = c3(0,¢) = o — t"rue, eeE(s),
=¢*(s,¢) = ¢ iff ¢ =0 and esE(s).
Note that e* is the (unique) event triggering a transition from state s, while ¢t* is the

interval between transitions of the GSMP, beginning in state s with clock vector ¢. At a
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transition from s to «’ triggered by event ¢, new clock values are independently generated for

each e'eN(s',s,¢) = E(s') — (E(s) — {¢}); the clock values are generated from the distributions

F(;9¢,¢,s,¢). For e'eO(s',s,¢) = E(s') N (E(s) — {¢}), the old clock reading is kept after the 4
transition so that ¢, = ¢ (s,c). Finally, for e’'e(E(s) — {e}) - E(s'), event ' ceases to be ':E
scheduled after the transition so that ¢ = 0; this occurs (for a departure event clock) b,
whenever a customer departs to leave the server idle, for example. N
We are now ready to define the transition function of X. For (s,c)eZ, A = {s'} x {c'eC,: : : )
¢} < a., ecE(s')}, set N
(3.2) P((s,c), A) = p(s';8,¢") H F(ae;d',¢,3,¢%) H Iio,a,(c2) X
¢'eN(s',0,e%) 0(s",s,e°) N
Let X = (X = (Sa,Ca) : n 2 0) be the co-ordinate process having transition function (3.2). X
Then, forn>1, N
n-1 a
(33) A(n) =Y t*(54,Ca) X
k=0 ::o‘
is the time of the n’th transition of the GSMP. Thus, the GSMP Q = (Q(t) : t > 0) may be ':1
formally defined as ] : o4
(3.4) Qt) = f: SaI{A(n) <t < A(n+1)} o
n=0 v
where A(0) = 0. If we assume that A(n) — oo a.8. (i.e. that the process is non-explosive), "i
it follows that (3.2) through (3.4) yield a well-defined process Q. The process Q is said to 3
be the canonical GSMP associated with “problem data” as specified by (3.1). (For more W,
detail, see WHITT (1980)).
A key point of the above analysis is that a large class of queueing network simulations "
have Markov structure. The GSMP framework is a context which allows us to precisely :.
identify the nature of the associated Markov structure. This, in turn, has profound impli- :
cations both for the development of improved simulation algorithms and for the analysis ; A
of existing methodologies. "
)
4. OUTPUT ANALYSIS FOR TRANSIENT SIMULATIONS ?
Let X = (Sa : n 2 0) be the GSSMC corresponding to a GSMP. Let T be a finite-valued )
(possibly randomized) stopping time for X and let Y = (X, :0 < n < T) be an Ré-valued r.v. .:’
8 N
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The transient simulation output analysis problem concerns the estimation of quantities of

the form

(4.1) a=g(EY)
where g: R — R.

EXAMPLE 1: Let » be a real-valued function defined on the state space S of the
GSMP Q and consider the problem of estimating the parameter a = Eh(Q(t)). This is a
special case of (4.1), in which g(y) =y, Y = f(Sa,Cn : 0 < n < N(t) +1) = h(Sn(y), and
T~ 1= N(t) = max{n > 0: A(n) < t}.

EXAMPLE 2: Given a subset A of the state space of Q, define S(4) = inf{t > 0: Q(t)eA}.
If we set Y = A(T(A)), where T(A) = inf{n > 0: S,¢A}, and g(y) = y, then (4.1) incorporates
the problem of calculating a = ES(A).

EXAMPLE 3: For two subsets A and B, consider the problem of estimating o« =
E{S(A)|S(A) < §(B)}. The estimation of such a conditional expectation is a special case
of (4.1), in which d =2, Y = (A(T(A))I(T(A) < T(B)), I(T(A4) < T(B))). and g(y1,¥2) = »1/y3-
(To define g on all of R4, set g(y,0) =0.)

EXAMPLE 4: Given a real-valued function h, suppose that we wish to estimate the
variance a = varh(Q(t)). Here, Y = (h’(SN(g)), h(Sn))), d=2, and g(y1,¥3) = 1 — 43

EXAMPLE 5: Let T be a stopping time for X,Y =(f1(Xa:0<n<T), f2(Xa:0<n<T)) (f1, fa
are real-valued), and d = 2. The ratio estimation problem a = EY(1)/EY(2) (Y = (Y(1),Y(2))
is the instance of (4.1) in which g(y1,) = v1/va. (Define g(y,0) =0.)

A methodology for solving (4.1) is straight-forward and readily obtained. Let X, X;,...
be i.i.d. copies of the process X, and set ¥(n) = n~* L7, ¥; with (0) = 0 where Y; = f(X;, :

=l

0< n < T:). An estimator a(n) for a is then given by

a(n) = g(¥(n)).

The following theorem summarizes the behavior of a(n) (see SERFLING (1980), p.

118, for a proof which can be easily modified to cover the current circumstances.)

9

N YO T N N Y T N I N T A R e e N AN AT T T T T T e Y e P Ay
A n".‘\..w, ;!.1\.. ". USSR . ) ¥ Y., \h\., AN "“l".',"’ J‘ X (



-

e o e

st s bt b T L R G R L g lig g $5a it gt b pb e bat 00 et AF ©0'0 '8 0t 2 °aT e i R R LY AP AR I ¥od Tt ¥uy Sl VIY VRT TP R RTINS e —

THEOREM 1:
i) If E|Y]| < oo and if g is continuous in a neighborhood of EY, then a(n) — a a.s. as
n — 0.
ii) If E|Y)? < oo and if ¢ is differentiable at EY, then n/3(a(n) - a) = oN(0,1) as n — oo,
where 0? = Vg(EY)'CVy(EY), C = EYY* -~ EY - FY*, and Vg(EY) is the gradient of ¢
evaluated at EY.

Thus, under suitable regularity hypotheses, a(n) is strongly consistent for a (i.e. con-
verges to a a.s.) and satisfies a central limit theorem (CLT). The CLT asserts that the rate
of convergence of a(n) to a is roughly of order n-1/3, Thus, in order to add an additional
significant figure of accuracy (i.e. increase accuracy by a factor of 10), one has to increase
the number of observations by a factor of 100. This suggests that simulation is a relatively
inefficient tool for obtaining high-accuracy solutions. Of course, in many applications, two
or three significant figures of accuracy is quite acceptable and, as indicated in Section 2,
simulation can then be a competitive technique.

Because of the slow convergence rate of Monte Carlo simulation, error analysis is
particularly important. Typically, simulators assess error by producing confidence intervals
for the parameter to be estimated. The CLT provided by Theorem 1 is the key to obtaining
such confidence intervals in the transient setting. Set

C(n) == Z Y, Y} - ¥(n)P(n)

|—1

s(n) = (Vg(¥ (n))* C(n)Vg(P(n))*/?,
and let I(n) = [a(n)—2(6)s(n)/n!/3, a,+3(6)s(n)/n1/3] where 3(§) solves P{N(0,1) < 2(§)} = 1-6/2.
The following result states that I(n) is an asymptotic 100(1 - )% confidence interval for a.
(The proof is easy.)

PROPOSITION 1: If E||Y||? < oo, g is continuously differentiable in a neighborhood of
EY, and 0% = Vg(EY)!CVg(EY) > 0, then P{acI(n)} =16 as n — co.

Proposition 1 describes the basic output analysis algorithm for transient simulations.
It indicates what data needs to be collected from the simulation, and how the data must
be manipulated in order to produce confidence intervals that are asympotically valid.

Several important refinements of Proposition 1 are worth mentioning, however. First, it

may be inconvenient to se. the run length in terms of the number of observations generated,
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+ 3
since the amount of computer time required to generate a fixed number of observations P
will in general be random (e.g. time to simulate a Jackson network to time ¢ corresponds .
to a random number of state transitions). It is often more natural to specify run length '
in terms of a computer budget ¢, and to produce confidence intervals based on the data ';
generated within that budget constraint. %y
Let B,,8s,... be the amounts of computer time required to generate Y,,Y3,... respec- Y
tively; we make the natural assumption that the random vectors (Y1, 8:), (Y2, 52), ... are i.i.d. E:
Note that the number of observations «(t) = max{n > 0: 1., Bx < t} generated by time tis a NG
renewal process. The natural point estimate for a is a; = a(x(t)) and the natural confidence i '
interval to use is I, = I(x(t)). .'::
3
THEOREM 2: ‘::
i) If E||Y|| < oo, B; < oo a.8., and if ¢ is continuous in a neighborhood of EY, then o — a =
5.8, ot
ii) If E||Y)? < o0, EB; < oo, and if g is continuously differentiable in a neighborhood of y:
EY, then t}/3(a, — a) = oN(0,1) as t — oo where o = EB, - Vg(EY)!CVg(EY), and C = ‘::3
EYY* - EY - EY*. Furthermore, if 0% > 0, ther P{ack} —+1—-6 as t — oo.
We refer to GLYNN and WHITT (1988a) for a proof of Theorem 2. f:;
A second refinement concerns running the simulation according to a sequential stopping iu
rule, in which the run length is not set in advance. Instead, the simulation is allowed to »
run until either an absolute or relative error precision ¢ is met. Note that the confidence i
interval I(n) has half-width 2(s)s(n)/n!/2. Thus, g
'
(4.2) T(¢) = min{n > 1: 2(§)s{n)n"*/2 + n~! < ¢} ;;
2
is a sequential stopping rule designed to stop the simulation when the interval half-width :;
drops below ¢ (the additional n~! term is included to prevent the simulation from stopping :’}
too early); this is an absolute precision stopping rule. (In a relative precision rule, s would '
be scaled to the magnitude of a.) Set I(e) = I(T(¢)). :E
oy
THEOREM 3: If E|Y|? < oo, ¢ is continuously differentiable in a neighborhood of EY, ES
and o? = Vg(EY)!CVg(EY) > 0, then P{acl(¢)} - 1-6 as ¢ 0. )
See GLYNN and WHITT (1988b) for a proof.
11 :}:
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A major concern in all of the confidence interval methodologies described above is that
they are based on asymptotic limit theory. For small to moderate run lengths, the limit
theory may be misleading. From a practical standpoint, this manifests itself by producing
confidence intervals with incorrect coverage levels (e.g. a confidence interval with a stated
coverage level of 90% may only cover a 80% of the times). Several factors typically lead
to confidence interval degradation. Firstly, the r.v.’s Y;,Y;,... may be highly skewed and
asymmetric so that the multivariate CLT for ¥(n) exhibits a slow rate of convergence.
Secondly, non-linearities in g may exacerbate the situation. For example, ¥(n) is unbiased
for EY, but g(¥(n)) is generally biased for g(EY) when ¢ is non-linear. These factors lead
to slow convergence in the CLT for a(n) which, in turn, leads to poor coverage in I(n).
Development of small-sample corrections to the confidence intervals described above is an

active area of current research.

5. OUTPUT ANALYSIS FOR STEADY-STATE SIMULATIONS

In this section, we describe the output analysis problem for estimation of steady-state
parameters. For f:T — R4, let Y, = f(X.) where X = (X, : n > 0) is the GSSMC associated
with the queueing system. Suppose the sequence (Y, : n > 0} is ergodic in the sense that

there exists a finite-valued (deterministic) vector 4 such that

(5.1) P(n)=>p

as n — oo. The steady-state simulations output analysis problem concerns estimating
a = g(p) where g: R — R is given.

In many applications, the simulator’s interest centers on steady-state characteristics
of the process @, as opposed to X. Specifically, for A : § — R9, interest frequently is
concentrated on the long-run behavior of

1 t
2 [ Matnas
0
and, more generally,
.1/t
(5.2) a= Hlim /o h(Q(s))ds)

(if the limit exists) for k: R¢ — R.

EXAMPLE 6: If Q is the queue-length process for an open queueing network and k(z) =
z + -+ + 24, then a (as defined by (5.2)) corresponds to the steady-state expected total

number of customers in the system.
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EXAMPLE 7: To calculate the steady-state variance of the total number of customers
in the system, let h(q) = ((X§ )%, i) and set k(y,va) = 31 — 43.

EXAMPLE 8: To measure the steady-state ratio of customers at two stations ¢ and j in
a queueing network, let Q be the corresponding vector queue-length process, h(g) = (¢, 4;)

and set k(y1,¥2) = y1/ya-

The next result shows that the estimation problem (5.2) is but a special case of the

steady-state simulation problem for the chain X. (For the proof, see the Appendix.)

PROPOSITION 2: For h: S — R4, suppose that

n—1

1 . .

- 2 h{Sk)t*(Sk, Ca) =% 1
k=0

1 n-1

; Z t‘(Sh, Ck) L B
k=0
n—-1

= 3 IB(SW)lE" (Sh, Co) 5 s
k=0

where gy, 3, us are finite (deterministic) constants and u; > 0. Then,

%/o‘ h(Q(s))ds =% py /ua

as t — oo and (5.2) is a special case of the steady-state simulation problem, in which f(s,¢) =
(h(8)¢°(s,¢),t*(s,c)) and g: R4+t — R is defined by g(z,,...,24, Za+1) = k(Z1/Td+1,-- - Zd/Zd+1)-

Before proceeding to the discussion of simulation methodology for the steady-state
simulation problem, we will detour (for a moment) to discussing conditions guaranteeing
the validity of (5.1). Such conditions show that the steady-state simulation problem is
well-posed. A key to the analysis is the Markov chain X. An extensive body of theory has
been developed to study the recurrence structure of GSSMC's. One particularly powerful
approach involves proving that the chain X is recurrent in the sense of Harris. Specifically,
the chain X is said to be Harris recurrent if there exists a set A C £, a positive number ),

an integer n > 1, and a probability distribution ¢ on T such that:
(6.3) i) P{XeA infinitely often |Xo = (s,c)} = 1 for all (s,c)eE
ii)  P{Xne-|Xo=(s,¢)} > Ap(-) for all (s,c)eA.
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In most applications, 4 is typically a compact subset of £ and condition ii) translates _',;:
into a requirement that the measures P{X,¢:|X, = (s,¢c)} have a common density compo- W
nent which is uniformly bounded (in (s,c)e4) away from zero; if the density component is '::
continuous in (s,c), the compactness of A often suffices to obtain a uniform lower bound on ,::
the densities. This discussion suggests that we can reasonably expect many GSMP’s to be A ::
Harris recurrent, particularly when considering those GSMP’s for which the distributions ]
F(;#',¢,3,¢) have continuous positive (Lebesgue) density components. .
An important observation in the study of Harris chains is that condition (5.3) permits “.::‘
one to “split” the transition function P{X,.¢-|X, = (s,c)} over the set A: '!'
o~

(5.4) P{Xne - |Xo = (s,¢)} = Ap() + (1= )Q((s,), ) :';::’s
o

for (s,c)eA, where Q((s,¢),") is a probability distribution on T. Condition (5.4) states that ?:EE
if X, eA, the distribution of X,.,, is determined by a “coin flip” in which the probability "?
of success is A. If the coin flip is successful, X,.,, is distributed according to y(-) (inde- ‘g
pendently of the position of X at time r'), whereas, if the coin flip is unsuccessful, X, is 0::
distributed according to Q(X,,-). ::'.’

Note that condition (5.3) i guarantees that 4 is hit infinitely often by X. Since the
probability of a successful coin flip is A at each visit to A4, a “geometric trials” argument
shows that eventually a successful coin flip must occur; let r be the associated time at

which X is distributed according to p. It is evident that X, has a distribution indepen-

X S

-

dent of Xo,...,X,—a. This regenerative-type characteristic of the random time r can be e
~
shown to imply that Harris chains possess a non-trivial o-finite measure » (unique up to a 's:
multiplicative constant) which is stationary in the sense that '

L]
x() = /;: P{Xy¢ - |Xo = z}x(dz). o
Furthermore, if »(-) is finite, it can be expressed as .u
r=-1 . '::“
=()=E, {Z I(ch-)} [Bypr ,‘

k=0

WY
where E,(-) denotes the expectation conditional on the initial distribution of X equalling . -_‘
(See ATHREYA and NEY (1978) for details.) Finally, if E,r <0 andif E, ( ol f(X,,)ll) < N :':
oo, the strong law (5.1) holds: "‘

1 n—-1 .
;Zf(xk)_’l‘ a.s. 3
k=0 :|‘“

‘l
B R

»
Nﬁ
Q~’
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as n — oo (regardless of the initial distribution of X); see REVUZ (1984), p. 139. Thus, the
Markov chain theory described here suggests that the limit theorem (5.1) will frequently
be in force when dealing with steady-state queueing simulations. Developing precise con-
ditions on the basic building blocks of the GSMP (i.e. S,E(s),r.., p(s';5,¢), F(;4',¢,3,¢))
that guarantee Harris recurrence of X is an active area of current research.

An additional benefit of this approach is that if E,r < oo and if E, 3125 || £(Xa)]l < oo,
the regenerative-type structure of X permits us to re-express the steady-state limit 4 in

terms of the ratio

r—-1
(5.5) p=E, Y {(X:)/E,r.
k=0

(see GLYNN (1982)). As we shall see, (5.5) will permit us to reduce the steady-state
simulation problem to a special case of the transient simulation problem studied in Section
4. This idea lies at the core of the regenerative method of steady-state simulation output
analysis.
Specifically, note that if E, 525 [|A(Sa)l|t*(Sk, Cx) < oo and E, 523 ¢°(Sk, Ck) < oo, then

Proposition 2, (5.1) and (5.5) may be combined to prove that

1t ae. By 120 h(Sk)t* (Sk, Ci

[, mater = B P
as t — oo. Then, estimating a as defined by (5.2) is equivalent to estimating the parameter
a = g(E,Y) where

r—1 r~-1
(5.6) Y= (Z A(SA)E" (b, Cn), 2c°(s..c.))

k=0 k=0

and g(y1,...,¥d va+1) = k(y1/Va+1,- -, va/ya+1). Observing that Y depends on X only up to the
randomized stopping time r, we see that a is expressed precisely in the form (4.1), which is
the transient simulation problem. Thus, all the transient simulation methodology described
in Section 4 can be readily applied to the estimation of the steady-state parameter a.

The regenerative method is particularly straightforward to carry out in the case that
the process Q = (Q(t) : t 2 0) is an S-valued continuous-time Markov chain (CTMC). This
typically occurs when all the distributions F(z;#',¢',s,¢) are exponential (i.e. of the form
1 - exp(~A(s', ¢, 8,¢)z) for z > 0). If Q is an irreducible positive recurrent CTMC, it is well
known that the process Q “regenerates” at those instants at which @ enters a fixed state,

say yeS.

15

b ‘" -~ O L W ' . 1. .- SN I VLTS I/ (ALY 35 8P LN - .’
';‘»'t .’a‘;‘i‘a‘l’. l‘.’o‘.'t_.'\_.‘l,."’;'l’. ..'l!.‘l!g‘!_.‘l!“l‘.o'l.' l,|.,‘. AN Ak n -- .‘ l‘ O P 3 ' 3 ‘( 7 y '( o, 4% l.l.!. XX "N(.’f la ﬁ.‘lt

........



L o

PR A

PRI

D I ! . Py », v W AT W A ¥
20ttt T R W Wt S 8, B gt S P A S R S N R S

Thus the regenerative structure is available to the simulator without having to explic-
itly “split” the transition function of X as in (5.4). In particular, if r(y) = inf{n 2 1: S, =y}
and E, TiM-1(|la(Sk)l| + 1)t*(Sk, Cx) < 00 (E, () is the expectation operator for the CTMC
conditional on Q(0) = y), then a (as defined by (5.2)) takes the form a = g(E,Y(y)) where
9(v1,- ., ¥ Va+1) = k(y1/Yd+1, .. .,va/va+1) and Y(y) is given as in (5.6), with r(y) playing the
role of r. In applying the transient methodology of Section 4 to the regenerative steady-
state analysis of CTMC’s, we recall that the algorithm involves simulating i.i.d. copies of
the chain Q from time 0 to time A(r(y)). An interesting feature of the algorithm is that
because of the fact that the evolution of Q is independent over “cycles” formed by entrance
times to y, the above approach is equivalent to simulating one copy of @ until time A(r,(y)),
where r,(y) in the time of the n’th visit of (S, : n > 0) to y. Thus, forming the transient
estimate a(n) = g(¥(n)) is equivalent to simulating @ for A(r,(y)) time units and computing
k((RoQ) (A (7(1)))), where (RoQ) (s) = ¢=* [ h(Q(s))ds.

Given that any state yeS may be chosen as the “regeneration” state, it is natural to ask
whether the efficiency of the regenerative method for estimating a = k (limewoo (Ao Q) (¢))
is affected by the choice of the regeneration state. By efficiency, we refer to the quality
of the estimator available after ¢ units of computer times have been expended. Theorem
2 (together with the regenerative method, which permits us to estimate a via g(¥.(y)))
shows that the regeneration state z is more efficient than y if s2(z) < 03(y), where ¢%() =
Ep1(-)Vg(EY())*C()Vg(EY () (clearly, A1, Vg(EY), and C all depend on the regeneration
state). It seems reasonable to assume that the computational effort g, required to generate
Q over the j’th cycle takes the form

B; = z x(Sx)
[ ]
for some function x(-), where the sum is over the states visited on the j’th cycle.

PROPOSITION 3: Suppose Q is a positive recurrent irreducible CTMC, and that ()
is differentiable. If x(y) > 0 for all y and if ES,(z) < oo, E||Y(z)]|® < oo for some z, then
o3(y) = o3(z) for all yes.

For the proof, see the Appendix. Thus, the efficiency of the regenerative method for
CTMC's is independent of the choice of the regeneration state. (This result does not extend

in general to the regenerative method as based on the “splitting” approach of (5.4).)
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A limitation of the regenerative technique described above for queueing systems (based
on the “splitting” method) is that it takes significant effort (both analytically and in
programming time) on the part of the simulator to adapt software so as to identify the
regeneration times. An alternative approach to developing methodologies for the steady-
state simulation problem requires strengthening (5.1) to a functional central limit theozem

(FCLT) hypothesis on (Y, : n > 0), where Y, = f(X,): There exists a matrix 4 such that

ne)
(5.7) nl/2 (;1‘- S Y- tp) = AB(t)

k=0

as n — oo in D[0, o0) (the Skorohod space of right continuous functions with left limits having
domain [0,00) and range R?), where B(-) is a standard Brownian motion on R¢ (so that
EB(s)B(s)* = s-I). MAIGRET (1978) proved FCLT’s of the form (5.7) for Harris chains, by
exploiting the martingale central limit theorem. (Although her proof was stated for d =1,
the result is easily extended to our current setting.) Thus, (5.7) is a hypothesis which one
can reasonably expect to hold for a great many queueing systems.

Let a(n) = g(P(n)) be the point estimator for the steady-state limit a. The following

result is easily established, and summarizes the behavior of a(n).

PROPOSITION 4: Suppose (5.7) holds and let C = A*A. If ¢ is continuous at , then
a(n) = a = g(u) as n — co. If, in addition, ¢ is differentiable at u, then n'/3(a(n)—a) = o N(0,1)
as n — oo, where 02 = Vg(u)tCVg(u).

Proposition 4 shows that if one can construct an estimator s(n) = |¢| as n — oo, then
P{aela(n) — 2(6)s(n)/n/3,a(n) + 2(6)s(n)/n?/3]} — 1 -6 as n — oo whenever o2 > 0. Thus, a
confidence interval methodology is easily obtained, once one is given a consistent estimator
for 0. As a consequence, the development of consistent estimators for the parameter
o? appearing in Proposition 4 is the central problem of steady-state simulation output
analysis.

To construct a consistent estimator for o2, observe that if g is continuously differentiable
at u, then (5.7) implies that Vg(P(n)) = Vg(u) as n — co. Thus, the hard part of the
estimation problem deals with estimating C. To estimate C, observe that if {n||P(n) — u|j?:

n > 1} is uniformly integrable, then

(5.8) C = lim n-E(P(n) - u)(P(n) - )"
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Suppose (Y, : n > 0) is strictly stationary with 32 || E(Yo — s)(Ya — u)*]| < 0. By computing

n=0

the right-hand side of (5.8), one easily shows that
(5.9) C = E(Yo - p)(Yo — p) + Y _ E(Yo — p)(Ya — p)t + E(Ya — )(Yo — u)".
k=1

Several different methods (e.g. spectral techniques, autoregressive methods) for estimating
C rely on the representation (5.9); see Chapter 3 of BRATLEY, FOX, and SCHRAGE
(1987). Recall that (5.9) only holds exactly when the sequence (Y, : n > 0) is strictly
stationary. Typically, a simulation of the GSSMC X gives rise to a non-stationary process,
since X, will usually have a non-stationary distribution. In order to justify the use of
stationary process ideas in a queueing simulation context, it is of some comfort to recognize

that if X is an aperiodic Harris chain with a finite invariant measure, then
(Xosk : k2 0) = (X3 : k> 0)

(weak convergence in the product topology) as n — oo, where X* = (X} : k > 0) is strictly
stationary (see REVUZ (1984), p. 198). Thus, one expects that many queueing systems are
at least asymptotically stationary. This suggests that, at least in a large-sample context,
algorithms based on a stationarity assumption should behave reasonable well.

As in the transient simulation setting, it is often more convenient to define sample
size in terms of a budget constraint ¢ on the computer time. As in the transient case,
let 8,,8;,... be the amounts of computer time required to generate Y;,Ys,... respectively.
Then, (t) = max{n>0:Y1_, Ay < t} is the number of observations generated in ¢ time units.

The natural point estimate for a is a, = a(x(t)).

THEOREM 4: Suppose that (5.7) holds and that g is differentiable at u. If n-1 3°0_, B3 —
7 a.8. a8 n — oo (where v is a finite positive deterministic constant), then ¢!/3(a, — a) =
oN(0,1) as t — co, where 02 = 4Vg(u)*CVyg(u). I, in addition, ¢ > 0 and s = o as ¢t — oo,
then P{as[a: — 3(5)s/t}/3, a + 5(6)s¢/t/3]} = 1 -6 a8 t — co.

For a proof, see GLYNN and WHITT (1988a)

An analogue of the sequential stopping rule methodology for transient simulations also
extends to the steady-state setting. Let s(n) be an estimator for (Vg(u)*CVg(u))!/? based on
the observations ;,...,Y, and let T(e) be defined as in (4.2).

THEOREM 5: Suppose that (5.7) holds and that g is differentiable at u. If s(n) —
(Vo(u)*CVg(u))*/? > 0 a.8. as n — oo, then P{ac(a(T(¢e)) — ¢, a(T(c)) +¢]} ~1-6as e (0.
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For a proof, see GLYNN and WHITT (1988b).

6. RUN-LENGTH DETERMINATION FOR QUEUEING SIMULATIONS

As indicated in Sections 4 and 5, a major concern of simulators centers on the issue
of the amount of computer time ¢ required to calculate a queueing parameter a to within
a given precision s. One approach to the problem involves using a sequential stopping
rule of the form (4.2). Several difficulties with the method are apparent. Firstly, prior
to initiating such a simulation, the simulator will typically have no idea as to how much
computer time the simulation will use in computing the T(s) observations determined by
the stopping rule. Thus, the simulation may significantly exceed the desired computer
time budget (or, alternatively, the simulator may need to terminate the simulation early)
when such a sequential algorithm is used. Secondly, the nature of the random sample
size T(¢) can introduce certain contaminating effects into the simulation output analysis
procedure that generally would not be present (or, at the least, would be present in smaller
quantities) in a deterministic run-length simulation. For example, such sequential methods
are prone, particularly for largish ¢, to early termination because of an overly optimistic
variance estimate caused by the observations v,,Y;,..., Yr(, clustering closely together (due
to random circumstance). However, it turns out (fortunately) that such contaminating
effects decrease to zero as ¢ | 0. As a consequence, the sequential stopping rules of Sections
4 and 5 continue to form an important class of simulation algorithms, particularly for ¢

small.

Nevertheless, the above discussion indicates that approximation of the simulation run-
length required to compute a to within ¢ can be a valuable tool to the simulator. The
principal application is to determine whether a given (planned) simulation is feasible. For
example, if the approximate run-length is prohibitively large for the precision ¢, the simu-
lation would either need to be abandoned, be made more efficient, or the permissible error
level ¢ would need to be increased. Even if feasibility is guaranteed by the approxima-
tion, the approximation has further applications. The approximate run-length could be
used to assign a (deterministic) computer budget ¢ to the simulation, thereby avoiding the

contamination effects described earlier.

As a first step to developing an approximation, note that if a, is an estimator for a

satisfying t!/3(a, ~a) = oN(0,1), the 100(1-6)% confidence interval has length approximately
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2|o|2(6)/t*/2. Assuming o« # 0, this suggests that the run-length required to obtain a
100(1 - 6)% confidence interval for a of length ¢|a| is approximately 40223(6)/e?a3. Assuming
that {t(a; — a)?: ¢ > 0} is uniformly integrable, ¢ can be evaluated as

- e e

U’ = ‘l_.l&t . MSE(G;).

where MSE(a;) = E{a¢ — a)?. Thus, the key to developing appropriate run-length approxi-
mations is an estimate of MSE(a,) for large ¢.
ASMUSSEN (1987) and WHITT (1987) have studied the run-length approximation

problem for queues in heavy traffic. Specifically, consider the problem of estimating the

i T3

steady-state waiting time EW of a customer in the GI/G/1/ queue for a traffic intensity
just below unit. Assuming that EW is estimated by n-! Y522 W, (Wo,W,, are the waiting
times of successive customers) and that the computer time required to generate Ws, ..., W,_,
is n, it is argued there that

3
t-MSE(a,)=:E( ZW.— )

k=0
sc-(1-p)"2

for some constant ¢. Thus, in order to obtain estimates for EW of high relative precision,
it is necessary for ¢t >» (1 - p)~2. As pointed out by Asmussen and Whitt, a similar anal-
ysis can be formally carried out for more general networks of queues in which diffusion
approximations hold.

An important feature of this theory is that it forcefully points out the substantial

Clas =

amounts of computer time required to obtain (relatively) accurate solutions to queues in

L -

heavy traffic.

7. VARIANCE REDUCTION TECHNIQUES (VRT’S)

The idea underlying variance reduction is to exploit the stochastic structure of the
queueing model under consideration, in order to obtain improved computational efficiency.
The stochastic structure can often be used to construct a variety of alternative estimators
for the quantity a to be estimated. The remainder of this section will be devoted to a
discussion of how to choose the most “efficient” estimator in the class available to the
simulator.

Consider two competing estimators a,;(n) and a3(n). Suppose that a;(n) is obtained by

generating a sequence (Y;;: 1 < j < n), and that the time required to generate ¥;; is given

20
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by B;;. Thus, the time required to generate a;(n) is given by fi; +... + fin. Conversely,

\.
given a computer budget t, the estimator available at time t is a;¢ = ai(N;(t)), where } ;
Ni(t) =max{n 20:30_, fix <t}. :,':':
Assume that the estimators a;(n) (i = 1,2) satisfy FCLT’s: There exists finite o; and :E:
¢ < 1 such that '3:
(11) n!/3(tay(|nt]) - ta) = o; B(¢) ]
as n — oo, in D[e,00), where B() is a standard real-valued Brownian motion. If we see ¢t =1 :
in (7.1) and assume that {n(ai(n) ~ a)? : n > 1} is uniformly integrable, we find that ]
'
var a;(n) = 02 /n + o(1/n). Ei
]
We shall therefore say that az(n) has lower variance than the estimator a,(n) if 03 < o3. .‘
Techniques which give rise to a new estimator az(n) having lower variance than the original ‘ ;
estimator a,(n) are called variance reduction techniques (VRT’s). '::
To understand (7.1) better, suppose that a;(n) = &(¥i(n)), where ¥i(n) = n=' 3°0_, Yi. ':
This comprises a class of estimators extensively studied in both Sections 4 and 5. If the v
FCLT (5.7) holds for ¥;(n), and g is continuously differentiable in a neighborhood of p; (i "i
is the centering constant appearing in (5.7)), then (7.1) is valid with o? = Vg; (1)t 414, Vg; (i) ::f
(4 is the scaling matrix appearing in (5.7)). }
It might, at first, seem reasonable to choose the estimator with the smallest possible i :
variance. However, this choice neglects the fact that the simulation of the sequence :':
(Y:; : 5 2 0) may be considerably cheaper for one estimator than the other. Thus, the {::'
computer time needed to generate observations should be factored into the decision as to e
which estimator to use. This can be considered mathematically by analyzing the estimators .o
a;e (i = 1,2) rather than the a,(n)'s. The following result generalizes Theorems 2 and 4 (see N
GLYNN and WHITT (1988a)).
.
THEOREM 6: Suppose (7.1) holds and that n-!'3;_, fix — % a.8. as n — oo with v »
finite, deterministic, and positive. Then, t!/3(a;y — a) = n:N(0,1) as t — oo Where n? = y0}. :'o:
Thus, the appropriate figure of merit in comparing the computational efficiency of two ::
competing estimators a;(n), as(n) is the quantity & = 1/v,0?. The parameter ¢, is called ;
the efficiency of the estimator a;. Thus, the estimator aj(n) is said to be more efficient g
21 %
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than a(n) if ez > ¢;. Techniques which give rise to a new estimator a;(n) having greater
efficiency than the original estimator «,(n) are called efficiency improvement techniques
(EIT’s).

In much of the simulation literature, the parameters +,,v; are ignored in the analysis
of computational efficiency. Thus, the class of EIT’s is then identical to the class of
VRT’s. There are several reasons for ignoring the effect of v,,~;. First, in many VRT’s,
the additional computation required to form a3(n) from a;(n) is believed to be small, so
that ~, s 3. Secondly, the exact size of the +;’s is hard to quantify from a mathematical
standpoint, since the 4,’s typically reflect the quality of the programming implementation,

as well as various machine dependent considerations.

8. VRT 1: CONTROL VARIATES

Suppose a(n) is a real-valued estimator for a and that (§(n) : n > 1) is an R%-valued
sequence with mean zero. A sequence (§(n) : n > 1) which is known to converge to zero
asymptotically is called a control variate sequence. The idea behind control variates is that
the correlation structure between a(n) and §(n) can be fruitfully used to obtain a variance

reduction.
Suppose that a(n) and §(n) satisfy a joint d + 1 dimensional multivariate CLT: There

exists a finite-valued matrix A such that

(8.1) n'/3(a(n) ~ a, 6(n)) = AN(0,I)

as n — oo. Note that (8.1) implies that §(n) = 0 as n — . To exploit the correlation
between a(n) and §(n), set a(n,A) = a(n) — A*$(n) for AeR%. Observe that the continuous
mapping principle, as applied to (8.1), yields

(8.2) n3(a(n, A} - a) = o(A)N(0,1)

as n — oco. The CLT (8.2) shows that the new estimator a(n,)) is also consistent for a, in

the sense that a(n,A) = a a8 n — co. Since A is at our disposal, we may choose it 8o as to

minimize 02()). To analyze o3(), write C = A*A in the form

o- ()

where D is dx d and b is d x 1. If the covariance matrix D is positive definite, it is easily

shown that the quadratic form ¢3()) is minimized at
A=D1,

22
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and that ¢?(A*) = o2 - b*D~'b. Of course, in a typical simulation context, the value of A* will \ 'é:
need to be estimated from data (although in certain applications, D may be computable ~
prior to initiating the simulation). Assuming (A, : n > 0) is consistent for A* in the sense "
that A, = A* as n — oo, & converging-together argument proves that '.EE:‘
n‘/’(a(n, An) —a) = a(A*)N(0,1) :‘I"’
as n — oo. Thus, the “controlled” estimator a(n,),) achieves a variance reduction as E-g
compared with the original estimator a(n). To determine whether a(n,),) achieves an ::,
efficiency improvement, we of course need to balance the additional cost of computing ""‘
6(n) and A, from the simulation against the variance reduction obtained. This trade-off )
is determined both by the estimation problem at hand and the choice of control variables :::.:
used. :::"'
A particularly convenient set of control variates is typically available for the steady- .‘
state simulation of queueing networks. For example, consider a queueing network with d ::
stations and ¢ customer types. Suppose that V;; = (V,,(k) : k > 1) is the sequence of customer ‘
service times for customers of type j at station s. Assume that the sequence V;; is made :_ ),
up of i.i.d. r.v.’s with common mean ;; and finite variance o2. Let N,;(n) be the number ‘
of service completions for type j customers at station i in the first n transitions of the “:‘,
GSSMC X = (X = (Sa,Ca) : n 2 0). Choose a set B C {(i,):1<i<d, 1< 7 < ¢}; this will e
correspond to the set of control variates used. Specifically, let R4t
1 Nis(n) c;.';
(8.4) §(n) = [(Tv"(—") Z:l V.-,‘(")-Mci) =(".J')¢B] . %E:
W
The following result is straightforward to prove, and shows that §(n) is a control variate. ::;'
THEOREM 7: Suppose that (V;; : (s,5)¢B) is a collection of independent sequences. Then, E:_:
if Nij(n)/n = vi; a8 n — oo where v, is finite, positive, and deterministic (for all (i,5)eB), it 5'
follows that '.::-\.
n1/35(n) = AN(0, I) H
wJ
where D = A} A, satisfies D = diag(o?, : (s, j)¢B). .
The matrix D appearing in Theorem 7 is precisely the D of (8.3). Hence, the control :l
variates defined by (8.4) have known variance structure; see BAUER, VENKATRAMAN, »
and WILSON (1987) for further details on how to exploit this fact. :
23
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LAVENBERG, MOELLER, and WELCH (1982) examined control variate sequences

| based on (8.4) as well as several extensions which included information on the routing

1 RESES,

| structure of the network. A family of controls, called work variables, was found to be By
particularly effective. The ratio of variance reduction ¢2(1*)/o3 ranged from 0.2 to 0.95 for X
the models simulated. lf

9. VRT 2: INDIRECT ESTIMATION M
As the discussion of the previous six sections has suggested, discrete-event simulations ":'
for queueing systems are most naturally formulated in terms of the queue-length process

Q =(Q(¢) : t > 0). In many applications, the simulator may be more interested in estimating

e

characteristics of certain waiting times in the system. An important identity which can be

used here is Little’s Law.

e,

Let Qr = (Qr(t) : t > 0) be the total number of customers in some subnetwork of the

o

system. Let ((An,D,) : n > 1) be the sequence in which 4,, D, correspond to the arrival and ¢
departure times of the n’th customer to the subnetwork. Then, W, = D, — A,, is the amount \. :
of time a customer “waits” in the subnetwork. The following result is Little’s Law. E
THEOREM 8: If 4,/n — A~! a.s. and n! 0., Wy — w a.8. (0 <\, w < o), then A
L[ arthe e o i
tJo Y
ast — oo and ¢ = Aw. h
Thus, the steady-state mean waiting time w can be estimated as w = A~'¢ = g(A~1,q) .:E
where g(z,y) = zy. So, provided that we record both the queue-length process Qr and the N :
arrival times (A4, : n > 1) we can estimate w by technijues of the type described in Section
4 (without having to observe the waiting times directly). X

In most queueing simulations, however, both the waiting time sequence W = (W, : n 2 1)
and queue-length process Qr are directly observable. The question then arises as to whether
to estimate the steady-state mean waiting time w directly or to base the estimation on the
identity w = A~1q. As discussed in Section 7, the criterion for selection is efficiency. GLYNN
and WHITT (1988¢) analyze this situation by assuming a joint FCLT for the 4,’s and W, ’s:

There exists a finite-valued matrix A, such that

Lnt)
(9.1) ni/3 (%Al"‘l —tr-l, ;l‘-ZWk—tw) = A B(t)
k

=1

24
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:
as n — oo in D[0,00), where B(:) is a standard two-dimensional Brownian motion. To '0:;
compute the direct estimator n=! 37 _, W, requires observing the queueing simulation up 7]
to the time D) = max{D; :1 < k < n}. Thus, compared with the product estimator (n-14,) - L '
(J2~ Qr(s)ds/D,). The following result can be found in GLYNN and WHITT (1988c). N

w2

THEOREM 9: If (9.1) holds with 0 < A, w < oo, then

n Dy NG
nl/2 (%‘E:‘Wk - (&An> . (DL;,/‘; Qr(a)da)) =0 d.

Iy
as n — oo. <
From (9.1) and Theorem 9, it follows that both estimators have the same asymptotic " :
variance parameter (namely, o2, the (2,2) element of 4% 4,). Thus, there is no difference, y ‘,t:
in terms of (asymptotic) efficiency, betw-.n the direct estimator for w and the product .f
estimator based on w= A"1q. :
Howc:ver, in many queueing simulations, there is additional stochastic structure that ‘ ‘
can be expluiicd. In particular, one can often calculate A prior to running the simulation. .
This, in fact, is the typical situation where Qr corresponds to the total number of customers :ﬁ‘

.
-

in an open queue; A is then just the external arrival rate to the network. Thus, the direct
estimator for w can be compared with the indirect estimator A-(f] *Qr(s)ds/D.). To
compare efficiencies, suppose:

(9:2) i) {n"}[(A4n-nr"2)3+(Tr_, Wi —nw)?]:n > 1} is uniformly integrable

ii) E{W;|U; = u} is non-increasing in u for all ¢,5 > 1, where U; = 4; — A;_;.

s A

0
The second condition states that the waiting times are (roughly speaking) non-increasing i-\,
in the inter-arrival times. This is a condition which we would expect to hold in many :"
queueing systems. ;\N
-
THEOREM 10: If (9.1) and (9.2) hold, then e
R
ya (A7 o ;:i
nl/ ), Qr(d)ds —w | => o, N(0,1) -\.:.
where o2 > 73. »
Y,
See GLYNN and WHITT (1988c) for the proof. We conclude that the direct estimator N
",
for w is usually more efficient than the indirect estimator. :}'.“
Pl
A similar analysis can be carried out for the problem of estimating the steady-state )
queue-length parameter ¢q. Note that the identity ¢ = Aw suggests that in the presence of k.'
\I
2 o
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known ), the estimation of ¢ and w are equivalent problems. As a consequence, we can

conclude from Theorem 10 that the estimator An-! 3 ;_, W, is usually more efficient for
calculating ¢ than the more obvious estimator fop . Qr(d)ds/D.,. For numerical illustrations,
see LAW (1975).

10. VRT 3: DISCRETE-TIME CONVERSION
Suppose that @ = (Q(t) : t > 0) is an S-valued non-explosive CTMC and consider the

problem of estimating a = g(v) via simulation, where

v=5 [ rauna

andr: S — R4, g: R®— R. From the discussion in Section 5, it is evident that the problem
of estimating the steady-state parameter a = k(lim;—o ¢~ f; A(Q(s))ds) is a special case of the
above. The key idea is to let r(q) = (h(qg),1) and let g(zi,...,24, Zd+1) = k(Z1/2d41, .- -, Td/Za+1)-

The obvious approach to estimating a = g(v) is to recognize that it is a special case
of the transient simulation problem (4.1) and to employ the methodology described there.
Let a(n) be the estimator obtained by generating n i.i.d. copies (Q; :1 < ¢ < n) of the CTMC
up to the stopping time A(r(y)). It turns out that a more efficient estimator can be found
by simulating only the embedded discrete-time Markov chain (DTMC). This is the basis
of the principle of discrete-time conversion.

Let Z = (Z, : n 2 0) be the embedded DTMC associated with the CTMC Q i.e. Z, is
the n’th distinct state visited by Q. (If p(s’; s,¢) = 0 for all esE(s), s¢S, then Z, = S,.) Note
that if E 200 1r(Q(s)))|ds < co, then

(rw) r(¥)-1
(10.1) E{ fo ' r(a(a))da12}= 3" HZa)/A(2Za)

n=0
where A(z) is the exponential holding time parameter in z € S. As a consequence of (10.1),
v can be re-expressed as

r(y)-1

(10.2) v=E Y r(Z)/\Z).

k=0
Let a4(n) be the transient estimator for a = g(v) which exploits the discrete-time repre-
sentation (10.2). To be more precise, let 2(1),...,2(n) be i.i.d. copies of the sequence
Z (Z(3) = (Zin : n > 0)) generated up to time r(y). Then

aq(n) = g(¥'(n))
26
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:'
where Y} = S®)"1 (Z,,)/A(Zn). The following theorem compares the variances of a(n) v
and ay(n). )
"::f
THEOREM 11: Suppose that E( jo‘('(”” [Ir(Q(s)}l|ds)® < oo and g is differentiable at v. :::

Then "
nl/3(a(n) — a) = oN(0,1) -

/2 (a4(n) — a) = aaN(0, 1) :
where o2 = var[Vg(u)* f; ") r(Q(s))ds) and o3 = var|E{Vg(u)* [y r(Q(s))ds| Z}]. 2
.
The proof is essentially that of Theorem 1. It is a well known fact that if E¢? < oo, then o
var E{¢|7} < var ¢ for any sub o-field 7 defined on the same probability space as ¢. Thus, :EZ
03 < o2, and 80 a4(n) always delivers a guaranteed variance reduction as compared with ':E:
a(n). &
To compare efficiencies, note that simulating Z to time r(y) takes less effort than gener-
ating Q to A(r(y)), because we can dispense with the need to generate exponential variates. t
Thus, a4(n) is a double winner, in the sense that it improves upon a(n) both from a variance ;
and computation standpoint. For more on the method of steady-state discrete-time conver- 1
sion, see HORDIJK, IGLEHART, and SCHASSBERGER (1976) and FOX and GLYNN : )
(1986). §§
b
11. VRT 4: EXTENDED CONDITIONAL MONTE CARLO 0
e basic principle used in discrete-time conversion is that we can reduce the variance .:EE
of an estimator via conditioning. This general idea is known, in the simulation literature, hely
as the method of conditional Monte Carlo. In this section, we consider an extension :'

of conditional Monte Carlo in which the different observations over which the estimator o,
averages are conditioned on different r.v.’s. Following BRATLEY, FOX, and SHRAGE
(1987), p. 71, we call this method extended conditional Monte Carlo. In general we can :

not always expect to obtain a variance reduction by using this method. Nevertheless, there

is a general class of queueing simulations for which the technique does work. o
b

Given a real-valued Markov chain (MC) X = (X,:n20) and f: R — R, let ¥, = f(X,). __\r

Suppose that (Y, : n > 0) is ergodic in the sense that there exists finite 4 such that 3. '
1]

-

Y(n)=>u .':'.
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as n — oo; our goal here is to efficiently estimate the steady-state mean u. An important

queueing example of such a real-valued MC is the waiting time sequence (W, : n > 0) for

the GI/G/1/o0 queue, which obeys the recursion
(11.1) Wn+l = [Wu + "n+ll+:

where the sequence (5, : n > 1) is i.i.d. and independent of W,.

Suppose that X is a stochastically increasing MC (SIMC) i.e. X can be represented in
the form X,;1 = h(Xa,nn+1) Where h is ncu-decreasing in both arguments and (9, : n > 1)
is an i.i.d. sequence independent of X,. Note that (11.1) is a special case of a SIMC.
Our next result shows that it is often sufficient to assume only monotonicity in the first

co-ordinate of h (for the proof, see the Appendix).

PROPOSITION 5: Suppose that X satisfies a recursion of the form X, = A(Xp,n+1)
where h is non-decreasing in the first co-ordinate and (n, : n 2 1) is an i.i.d. sequence
independent of X,. If 5, has a continuous distribution, then X2x' (é denotes equality
in distribution), where X, = A'(X’,,n.,,), b’ i8 non-decreasing in both co-ordinates, and

(nt :n > 1) is an i.i.d. sequence independent of X} with !, 2x,.
The idea behind extended conditional Monte Carlo is to replace the estimator ¥(n) by

% = 13" BUKIX-L).

k=1

Note that ¥.(n) is a sample mean of the r.v.’s fi(Xo),.-., fo(Xn-1) Where
f.(z) = E{f(X1)| X0 = =}.

We assume that both ¥(n) and ¥,(n) satisfy CLT’s: There exists o, o, such that

n/3(P(n) — u) = oN(0,1)
(11.2)

n!/3(P,(n) — u) = 0.N(0,1)
as n — oo. Furthermore, assume that

{n{(¥(n) - 4)* + (Pe(n) — 4)?} : n 2 1}
(11.3)
is uniformly integrable

The following theorem shows that extended conditional Monte Carlo reduces variance if f

is monotone and X is a SIMC.
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THEOREM 12: Assume (11.2) and (11.3). If X is a SIMC and f is monotone, then

03 <03,

For the proof, see the Appendix. Because of the stochastic monotonicity that holds
in many queueing networks, we expect that extended conditional Monte Carlo should also
prove useful in situations where Q is vector-valued. For a result closely related to Theorem
12, see ROSS (1988). The efficiency of the method depends on the amount of variance
reduction and the ease of computing f,.

12. VRT 5: COMMON RANDOM NUMBERS
The idea underlying common random numbers (CRN’s) is that to compare two queue-

ing systems, it is “fairer” to drive the two systems using the same stream of random

numbers. If CRN’s are used and one system is treated “unfairly” by receiving a particu-

larly unlucky string of random inputs, then both are. Of course, in making this statement,
we are implicitly assuming that both systems respond in a similar manner to the driving
inputs. This suggests that the method of CRN’s depends on monotonicity.

Assume that X;, X; are real-valued SIMC’s (X; = (Xin : » 2 0)) and let £, fz be non-
decreasing functions. Let Y, = fi(X;s) and suppose that (Y;, : n > 0) (i = 1,2) is ergodic in
the sense that

Pi(n) = m
as n — co. Assuming that u; represents the “performance” of system i, the simulator is
often interested in estimating the difference a = u; — p3 in performance between the two
queueing systems. The naive estimation approach would involve simulating X, and X;

independently and estimating a via a;(n) = 9;(n) — ¥a(n). Assuming that there exists finite

01,02 such that
(12.1) nt/3(%i(n) - 3) = o; N(0, 1),
it is easily seen that

n'/3(as(n) — a) = oN(0,1)
where o2 = 0} + 03.

Suppose now that the method of CRN’s is used. Specifically, suppose that X; n41 =

h1(X1m Mn+1) and Xans1 = ba(Xan,Vns1) Where (nn : n > 1) is ii.d. independent of X;, and

29
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(va : n2>1) is i.i.d. independent of X;,. However, we now require that:

{X1.0 X2,0:Mn Va0 2 1} is an
(12.2)
associated family of r.v.’s

A standard approach to obtaining nontrivial association between the n,’s and »,’s is to

generate both 5, and v, by inversion from the same r.v. U,:
fin = F —I(Un)
va = G™YH(U,),

where F-1,G~! are the inverse distribution functions for n,v respectively.

However, in many settings, one can obtain the required association without explicit use
of inversion. For example, suppose that P{vn,edz} = F(dz/8;) and P{n.edz} = F(dz/6,), where
8,8, are positive. Thus, the distributions of 5, and v, differ by a change of “scale”. Suppose
that the sequence (n, : n > 1) is generated arbitrarily (e.g. by acceptance-rejection). If the

va's are derived from the 5,’s via

Un = (02/01)'l'n

then (12.2) follows. Thus, it is not necessary, in this change-of-scale setting, to use inversion
in order to apply CRN’s. In a similar fashion, explicit inversion can be avoided when the
distribution of v, differs from that of n, by a change of “location”. Changes of scale and
location arise frequently when making comparison of stochastic systems.

Let a.(n) = ¥;(n) — ¥3(n) be the CRN estimator, in which the input sequences (n, : n > 1)
and (va :n > 1) are dependent as in (12.2). Assume that

(12.3) n!/3(ac(n) — a) = 0.N(0,1)

and that
(nl(Fi(n) = 1) + (Ba(m) — W)} :n21) isa

(12.4)
uniformly integrable family of r.v.’s.

The following theorem is easily proved by the methods of HEIDELBERGER and IGLE-
HART (1979).

THEOREM 13: Suppose X;, X, are SIMC’s with f,, f, non-decreasing. If (12.1)-(12.4)

are in force, then o2 < o}.
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Because of the stochastic monotonicity present in many queueing systems, this suggests

that a variance reduction will often be achieved by using CRN’s to compare the perfor-
mance of two queueing systems. An efficiency improvement will result if the variance is
reduced and if the computational effort required to associate the 5,’s and v,’s is not too
large. Note that if inversion was used to generate the n,’s and v,’s independently, one can
continue to use inversion in order to associate the 5,’s and v,’s, provided that the same
stream of common uniforms is used for both families of r.v.’s. In this case, the effort re-
quired to associate the sequences is no greater than the effort required in the independent
case.

An idea similar to CRN’s can be used to estimate s = u, (see (12.1)). Henceforth, for
the remainder of this section, we drop the subscript from the first SIMC. Note that now
we are dealing with a single SIMC so that no comparison is being made. Suppose that the
na’s defining X are generated by inversion, so that g, = F-}(U,) when Uy, U,,... are i.i.d.
uniform r.v.’s. Observing that the antithetic r.v.’s 1 - U,,1-U;,... are also i.i.d. uniforms,
we can define the antithetic chain X!, via X} = Xo and X!, = h(X’, F~}(1 — Upn41)). Let

Y! = f(X.) and consider the antithetic estimator
aa(n) = 5(P(n) + 7'(n))

To compare the variance of this estimator with that of ¥(-), note that a,(n) corresponds
to simulating the dynamics of the SIMC for a total of 2n transitions. Thus, a,(n) must be
compared to ¥(2n). From (12.1), the relative variance quantity is #2/2. Suppose that

(12.5) n'/3(ag(n) ~ p) = aaN(0, 1)

as n — oo. The following result can be proved by the methods of HEIDELBERGER and
IGLEHART (1979).

THEOREM 14: Suppose X is a SIMC and f is monotone. If (12.1), (12.4), (12.5) are in

force, then o2 < 0%/2.

Again, due to the stochastic monotonicity present in many networks, we expect that
the method of antithetics will often provide a variance reduction in the queueing context.
A disadvantage of antithetics, as opposed to CRN’s, is that it appears inversion must be

used to generate the corresponding input streams of r.v.’s.
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13. VRT 6: SIMULATING THE ERROR IN HEAVY TRAFFIC

As indicated in Section 6, the amount of computer time ¢ required to simulate the

steady-state mean waiting time EW must satisfy ¢ » (1-p)~2 as p 1, in order to estimate

EW to a fixed degree of relative precision e. Thus, the problem of estimating the quantity
EW gets harder, in a relative sense, as p 1. MINH and SORLI (1983) developed an
elegant method for avoiding this difficulty when EW is the steady-state mean waiting time
in the GI/G/1/c queue.

Let V,,U; be the service time of the zero’th customer and the first interarrival time,
respectively, in the GI/G/1/o0 queue. Then, MARSHALL (1960) showed that if EV, <
EU,, E(V@ + U?) < oo, then

_EZ _EP
2EZ _ EI

EW =

where Z =V, - U, and I is the length of the first idle period in a GI/G/1/cc queue in which

the zero’th customer arrives at ¢t = 0. Thus, estimating a = EW is equivalent to estimating
a = g(EI?, EI) where G(z,y) = —EZ?/2EZ - z/y; the methods of Section 4 can then be used
to estimate a. This was the basic idea of MINH and SORLI (1983).

Noting that EW ~ ~EZ3/2EZ as p / 1 is the classical diffusion approximation for EW,

we recognize that the approach taken here is to use simulation only to estimate the error

term in the diffusion approximation to EW. Extensions of this idea to the GI/G/s/oc queue
appear in MINH (1987).

14. VRT 7: IMPORTANCE SAMPLING

Consider the problem of estimating the parameter a = P{W > w}, where W is the

steady-state mean waiting time of a customer in a GI/G/1/co queue in which p<1. f w is

large, the event {W > w} occurs rarely, so that conventional simulation is inefficient. The
idea underlying importance sampling is to alter the dynamics of the queueing system via a

“change of measure” so that the event, under the altered dynamics, occurs more frequently

(i.e. the “important” event occurs more often). Of course, in order to account for the new

dynamics, the estimator must be suitably modified.

To illustrate, suppose that P{W > w} is estimated by using the fact that W Z max(Ss :

k > 0), where (S, : n > 0) is the random walk with negative drift and So = 0 associated with

the GI/G/1/cc queue. Then, a can be re-expressed as a = P{T < oo} Where T = inf{n 2 0:

S, > w}. Suppose the i.i.d. summands of the random walk have common distribution F,
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where F has a moment generating function ¢ which converges in a neighborhood of the
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origin. Since (S, : n > 0) has negative drift, it follows that ¢'(0) < 0. Thus, if there exists a
positive root to (¢) = 1, it must be unique (by the convexity of ¢). Suppose that such a

unique root §* exists.

Rather than generating the summands of the random walk from the distribution F, )

consider generating the summands from the distribution ‘ )

F(dz) = "= F(dz). 4

Then, it is straightforward to verify that e

r.\

a= P{T < oo} = E{e™?"57;T < o} ) z

aly

where E(-) corresponds to the expectation in which the summands have distribution 7. "
Since T < oo a.8. under P (the random walk has positive drift under 5), >

(14.1) a = Eexp(—8*Sy). 5&3
X)

0!

SIEGMUND (1976) and ASMUSSEN (1985) show that simulation based on (14.1) is much ;:',
more efficient than simulation under F. The key is that F turns the drift positive, so that .

the event {T < oo} becomes certain. The factor exp(—6°Sr) is introduced to compensate for Y,
L

the new measure F. :

This area is currently active, from a research viewpoint. For an application of impor- .(
tance sampling to networks of queues, see PAREKH and WALRAND (1986). ,‘
- 'l'
-

15. GRADIENT ESTIMATION FOR QUEUEING SYSTEMS "
Consider a queueing system in which the dynamics depend on a parameter §eR™. "'
Specifically, let @ = (Q(¢) : ¢ > 0) be a GSMP in which the clock-setting distributions by
b

and routing probabilities depend on ¢ i.e. under parameter 4, the clocks are driven by ’:

distributions F(s, ;+',¢',s,¢) and customers are routed via p(4, s'; s,¢). Clearly, the queueing :-\.

parameter a to be estimated by the simulation algorithm then depends on ¢, i.e. a = a(f). A

Y _mw

5 5 -

current area of vigorous research concerns the efficient estimation of Va(¢). The interest in

the problem derives from the fact that gradient evaluations form an important ingredient ..{
of most efficient optimization routines. t f
Two basic methods have been suggested for attacking this problem. The first tech- '
nique, called infinitesimal perturbation analysis (IPA), typically assumes that the routing "
o
s 3

)
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probabilities are independent of 4, so that all ¢-dependence is incorporated via the distribu-

tions F(0,; o', ¢',s,¢). Also, the parameter a = a(8) usually takes the form a(f) = g(EsY) (Es(")

denotes expectation under the §-dynamics), where
_ A(N)
(15.1) EsY = E, / h(Q(s))ds,
(1]

N is an integer-valued r.v.,, h: § — RY, g: R® — R. Suppose, for simplicity, that seR.
The idea is to observe that if f(4,-;¢',¢',5,¢) is a scale family in ¢ (i.e. F(8,;4', ¢, 5,¢) =
F(-/6;4',¢,3,¢)), the clock-setting variates associated with the ¢-system can be generated
as 8Ry(s',¢',s,¢), ORz(s',¢',5,¢),... where the sequence (R,(s',¢',3,¢) : n > 1) is that associated
with F(;e',¢',s,¢). Let Q(8) = (Q(0,t) : ¢t > 0) be the GSMP in which the clock readings are
set by the sequence (4R, (s',¢',s,¢) : n > 1). The key observation is that for Y of the form
(15.1), EsY = EY(6) where

N(8)-1

A(0,N(0))
(15.2) Y() = [ QU Nde= 3 A(Su(O)E(Su(6), Ca(6))

k=0
Given 6, the r.v.’s (N(6),Sx(0) : 1 < k < N(9)) are typically constant in some neighborhood of
8o. Therefore, it follows from (15.2) that in computing the path-by-path derivative Y’(4) of
Y(6), we need only to compute the derivative of t*(Sk(6o), Cx(¢)) with respect to 8. In many
queueing systems, this calculation can easily be done. This allows us to calculate a'(6)
as o'(f) = Vg(EY (6))*EY’(6) (note that a'(6) = G(EY(d)) is a transient parameter of the type
described in Section 4, where §(y1,¥3) = Vg(v:)'y2 and ¥ () = (Y (6),Y'(9))), provided that

(15.3) 2 EY(5) = EY'(5).
A similar method works for location families (i.e. F(0,;4',¢',2,¢) = F(-—6;4',¢',3,¢)) and even
more generally.

While the above method works efficiently on certain classes of queueing systems, it
is not valid universally. In particular, there is a large class of non-pathological queueing
networks for which (15.3) is false; see HEIDELBERGER et al (1988) for details. For
further background on IPA, see ZAZANIS and SURI (1988).

The second technique for evaluating gradients uses the method of likelihood ratios.
Here, the -dependence may be reflected in both the clock-setting distributions F(6,-, s’ ¢ s, ¢)
and routing probabilities p(8,s';s,¢). However, the following density conditions need to be

in force:
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(15.4) i) F(8,dz;o' ¢ s,¢) = f(0,3;4',¢',8,¢) - F(o,dz;8',¢',38,¢)
when f(9,;#',¢', ,¢) i8 positive and continuously differentiable in 4.
ii)  p(8,4';s,¢) is either identically zero or identically positi e as a function
of 4, for each triplet (¢, s,¢).
Given a transient parameter of the form (4.1) (note that ¥ need not be of the form
(15.1) here), the density assumption (15.4) permits us to estimate a(8) = g(E»Y) by using
the likelihood ratio identity

(15.5) EsY = Ey, YL(8)

where L(6) = dP,/dP;, is the Radon-Nikodym derivative of the distribution P, with respect
to Py, (existence of dP,/dP,, is assured by (15.4)). Hence, if ¢ is scalar, this suggests that
a'(fo) = Vg(E,, Y)!Ee, Y L'(6,), provided that

(15.6) %E,,YL(a) = Eo,YL'(60).

The derivative interchange (15.6) is typically valid for queueing systems of arbitrary struc-
ture. As in the case of IPA, it is easily seen that Vg(E,,Y)*Ey,YL'(6,) is itself a transient
parameter of the form (4.1), so that the methodology of Section 4 may be used to develop
an efficient estimator for a'(4y). For more details on this approach, including a formula for
L'(80), see GLYNN (1987).
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APPENDIX ..

Proof of Proposition 2: Let N(t) = max{n > 0: A(n) < t}. Since n~'A(n) — u; a.s., it ’
'
follows that N(t)/t — 1/u; a.8. Also, it is apparent that e
1 [t 1 R
(A.l) ?/ h(Q(a))dG - -t- E h(S,)t‘(S,,, C'p,) < "h(SN(g))" t‘(SN(.),CN(g))/t '5‘

o k=0

L) -‘«

(4.2) 7 2t (S0, Ch) = 1 < t°(Sn() One)/t )
k=0 ;;,l'

Since N(tf) — oo a.8., evidently N(t)=! =N® |n(S,)lle* (Sk,Ch) — us a.8., which implies that u
IR (Sn(e))lIt* (Sw(e)s Cn(s)) /N (t) — 0 a.s. But N(t)/t — 1/u; a.8., so the right-hand side (RHS) of ¥ h
(A.1) converges to 0 a.s. Similarly, we see that the RHS of (A.2) goes to 0 a.s. Inequalities '!
(A.1) and (A.2) then yields 1

t N(t) . !

(A.3) l/ h(Q(s))ds — Lo | =N?‘$S")t (Sk, Cu) /N (¢) —0 a.s. Ry
tJo Lkmo t*(Sn, Cu)/N(t) -

2

The hypothesized strong laws then can be applied to the RHS of (A.3) to obtain the result. o
B
Proof of Proposition 3: By Theorem 4, p. 84, of CHUNG (1967), E|Y(y)[|* < oo &
for all y if E|Y(z)|? < oo. It is well known that u = E, [AU™) h(Q(s))ds/E,A(r(y)) is in- o
. o~

dependent of y. Write Y(y) = (Y'(y), T(y)), where T(y) = A(r(y)). Then, an easy calcula- s
tion shows that Vg(EY (y))!C(y)V4(EY(v)) = var, Z(s)/(E,T(4))* where Z(y) = Vk(u)'[¥'(y) - A

(E,Y'(y)/E,T(y))T(y). By Theorem 1, p. 99, of CHUNG (1967), var, Z(v)/E,T(y) is inde-
pendent of y. Thus, the proof is complete if we show that E, 8,(y)/E,T(y) is independent
of y. But EB,(y)/ET(y) = —Zx(s)v(s)/EA;}!v(s), where v is the stationary distribution of the
embedded chain of Q and A is the generator of Q; this latter ratio is independent of y.

Proof of Proposition 5: Put G(-) = P{n, < '} and F(z,') = P{h(z,n.) < ‘}. Let F~1(z,y)
be the inverse function defined by F-!(z,y) = sup{s : F(z,3) < y}. Set X; = X, and define
(X! : n>1) via the recursion X!, = h'(X’,,n,+1) where h'(z,y) = F-*(z,G(y)). Note that X’ is
a MC with transition distribution

P{X, 1 Sy|X, =z} = P{K(z,7n4+1) < ¥}
= P(FY(z,U) <y};
G(n) = U is a uniform r.v. since G is continuous. But P{F-!(z,U) < y} = F(z,y) because

F-1(z,) is an inverse function. Thus, it follows that X 2 x'. Monotonicity of A’ in the second
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co-ordinate is easy. For the first co-ordinate, use the fact that F(,y) is non-increasing to

conclude that F-!(.,y) is non-decreasing.

Proof of Theorem 12: Because of the uniform integrability, it suffices to show that

n n+l
var ) fo(Xe) < var ) f(Xa).
k=1 k=2

i.e.

3 var £.0) + 23 cov(£ulXa), £(X;))
k=1

k#5

< i:vu f(Xn41) + 2 cov(f(Xus1), £(Xj+1))
k=1

ks

Note that varf.(Xx) = var E{f(Xi+1)|Xs} < var f(Xx+1) Dby the principle of conditional
Monte Carlo. To complete the proof, we therefore need to show that Ef.(Xi)f.(X;) <
Ef(Xx+1)f(X;41) for k < ;5. By the Markov property, Ef(Xi+1)f(X;41) = Ecj—x(Xx) where
ce(z) = E{f(X1)f(Xe+1)|Xo = z}. Notice that if X, = z, X, is a non-decreasing function of
the independent r.v.’s n;,...,n,. Since f is monotone, it follows that f(X;) and f(X..,) are
associated r.v.’s, conditional on X, = z. Thus, a standard inequality (see BARLOW and
PROSCHAN (1975), p. 31) yields

ce(z) 2 E{f(X1)|Xo = z} - E{f(Xe41)| X0 = z}
= fc(’) ' E{,l(xl)lxo = z}'

If we integrate the above inequality with respect to P{X,edz}, we obtain Ef(Xk+1)f(X;+1)
2 Efe(Xi)fe(X;)-

37

3] M e T T W o W™ T W W L Ty T oV W W W ) ., W W Y e e L) Y L™ ¥ %] N L LN
AN AT LR N AN LB LR A AN G R O S R A

%50

LA

¥
Q:



18280 0" b

4V 0 Y, s &% . .$%. ) o\
X .

. < i TPy , .
VP ML N U ML VR W WU L WL WU W W0 WU UCOOT O R T Y T T R L L s

REFERENCES

ASMUSSEN, S. (1985). Conjugate processes and the simulation of ruin problems. Stochas-
tic Process. Appl. 20, 213-229.

ASMUSSEN, S. (1987). Regenerative simulation in heavy traffic. Technical Report, Aal-
borg University Centre, Denmark.

ATHREYA, K. B and NEY, P. (1978). A new approach to the limit theory of recurrent
Markov chains. Trans. Amer. Math. Soc. 245, 493-501.

BARLOW, R. E. and PROSCHAN, F. (1975). Statistical Theory of Reliability and Life Testing.
Holt, Rinehart, and Winston, New York.

BAUER, K. W. VENKATRAMAN, S., and WILSON, J. R. (1987). Estimation procedures
based on control variates with known covariance matrix. Proe. of the 1987 Winter
Simulation Conference, 334-341.

BRATLEY, P., FOX, B. L., and SCHRAGE, L. E. (1987). A Guide to Simulation.
Springer-Verlag, New York.

CHUNG, K. L. (1967). Markov Chains with Stationary Transstion Probabslities. Springer-
Verlag, New York.

FOX, B. L. and GLYNN, P. W. (1986). Discrete-time conversion for simulating semi-
Markov processes. Oper. Res. Lett. 5, 191-196.

GLYNN, P. W. (1982). Regenerative simulation of Harris recurrent Markov chains. Tech-
nical Report 18, Dept. of Operations Research, Stanford University, Stanford, CA.
GLYNN, P. W. (1987). Likelihood ratio gradient estimation: An overview. Proc. of the

1987 Winter Simulation Conference, 366-375.

GLYNN, P. W. and WHITT, W. (1988a). Efficiency of simulation estimators. In prepa-
ration.

GLYNN, P. W. and WHITT, W. (1988b). Sequential stopping in si.a'ation estimation.
In preparation.

GLYNN, P. W. and WHITT, W. (1988c). Indirect estimation via L = AW. To appear in
Oper. Res..

HEIDELBERGER, P. and IGLEHART, D. L. (1979). Comparing stochastic systems using
regenerative simulation with common random numbers. Adv. A-pl. Prob. 11, 804-
819.

HEIDELBERGER, P., CAO, X.-R., ZAZANIS, M. A,, and SUR], R. (1988). Convergence

38

M

A hAA Ay
P % N

d
2

o] ™ RS

]~ e

R M L S L A A R Tk T
» WU LS, D ARV AT, T SUGLUIEEN SUORIITANN,



ol O U 2 SO OGS 52

e~
XX

AR

PR
N2 P

properties of infinitesimal perturbation analysis estimates. To appear in Manage. Sci.

HORDIJK, A. IGLEHART, D. L., and SCHASSBERGER, R. (1976). Discrete-time meth-
ods of simulating continuous-time Markov chains. Adv. Appl. Probab. 8, 772-788.

LAVENBERG, S. S., MOELLER, T. L. and WELCH, P. D. (1982). Statistical results
on multiple control variables with application to queueing network simulation. Oper.
Res. 30, 182-202.

LAW, A. M. (1975). Efficient estimators for simulated queueing systems. Manage. Sei.
22, 30-41.

MAIGRET, N. (1978). Théor2me de limite centrale functionnel pour une chaine de Markov
récurrente au sens de Harris et positive. Annales de 'Institut Henrs Poincaré B, 11,
187-197.

MARSHALL, K. T. (1968). Some relationships between the distributions of waiting time,
idle time and interoutput time in the GI/G/1 queue. SIAM J. Appl. Math. 16, 324-327.

MINH, D. L. and SORLI, R. M. (1983). Simulating the GI/G/1 queue in heavy traffic.
Oper. Res. 31, 966-971.

MINH, D. L. (1987). Simulating GI/G/k queues in heavy trafic. Manage. Secsi. 33, 1192-
1199.

PAREKH, S. and WALRAND, J. (1986). Quick simulation of excessive backlogs in net-
works of queues. Proc. of the 28°'th Conference on Decision and Control, 979-986.

REVUZ, D. (1984). Markov Chains. North-Holland, New York.

ROSS, S. M. (1988). Simulating average delay-variance reduction by conditioning. To
appear in Probabdity in the Engineering and Informational Sciences.

SERFLING, R. J. (1980). Approzimation Theorems for Mathematical Statistics. John
Wiley, New York.

SIEGMUND, D. (1976). Importance sampling in the Monte Carlo study of sequential
tests. Ann. Stat. 4, 673-684.

WHITT, W. (1980). Continuity of generalized semi-Markov processes. Math. Oper. Res.
5, 494-501.

WHITT, W. (1988). Planning queueing simulations. To appear in Manage. Sc.

ZAZANIS, M. A. and SURI, R. (1988). Comparison of perturbation analysis with conven-

tional sensitivity estimates for stochastic systems. To appear in Oper. Res.

39



